CS2030 Reference
Java language
Overloading
· Exceptions and return types are not part of function signature
Overriding
· Cannot throw checked exceptions that are not stated in (or subclassed from) overridden method
· Cannot reduce access (protected/private method cannot override public method)
· Can increase access (public method can override protected method)
· private, static, or final methods cannot be overridden
Enums
· Enums are actually Java classes with syntactic sugar
· Enums are final; they cannot be inherited from
· public final class EventType extends Enum<EventType>
where Enum<E extends Enum<E>>
Numeric Types
· byte short int long float double
· char int long float double
· Widening conversions may be implicit
· Narrowing conversions need explicit casts
· Boxing and unboxing may be implicit
· Boxed type can be converted (implicitly or explicitly, as per primitive type rules) to any primitive type
· Unboxed type cannot be converted to other boxed types, even explicitly
· Boxed type cannot be converted another boxed type, even explicitly
· All boxed numeric types are final
· Any number of “_” can appear between digits
· Small Integers are interned by the Integer.valueOf(int) factory method and will have the same object reference
Booleans
· boolean
· Does not convert to/from any other primitive type, even explicitly
Strings
· Strings are immutable reference types which default to null
· String s1 = "test"; String s2 = "test"; will be the same object reference because of automatic string internment of literal strings and string-valued constant expressions
Range-based For Loops
· for(x : collection) or for(T x : collection)
· Works with any collection that implements Iterable<U> where U is implicit-convertible to T
· Works even if T is a primitive type, as long as implicit-convertibility holds
Memory Model
· this reference is always placed on the stack when calling a non-static method
Generics
· Type inference for instantiation of generic classes – checks both assignee type and constructor parameters to determine inferred type
· List<Integer> x = new ArrayList<>() – okay, inferred as Integer
· List<? extends Integer> x = new ArrayList<>() – good, inferred as Integer
· List<? extends Object> x = new ArrayList<>() – good, inferred as Object
· List<? super Integer> x = new ArrayList<>() – good, inferred as Object
· List<Object> x = new ArrayList<>().subList(0,1) – good, inferred as Object (but throws IndexOutOfBoundsException)
· List<Integer> x = new ArrayList<>().subList(0,1) – bad, inferred as Object and List<Object> cannot be implicitly converted to List<Integer>
· List<Integer> x = new ArrayList<>(new ArrayList<Integer>()) – good, inferred as Integer
· List<Object> x = new ArrayList<>(new ArrayList<Integer>()) – good, inferred as Object
· List<Integer> x = new ArrayList<>(new ArrayList<Object>()) – bad, cannot infer type argument (i.e. no type will give a valid expression)
· Object x = new ArrayList<>().get(0) – good, inferred as Object (but throws IndexOutOfBoundsException)
· Integer x = new ArrayList<>().get(0) – bad, inferred as Object which cannot be implicitly converted to Integer
Exceptions
· Use try/catch/finally
· Only Throwables can be thrown
· Exception extends Throwable
· RuntimeException extends Exception
· All Exceptions that are not RuntimeExceptions must be explicitly declared in methods that might throw them
· More specific exceptions must be caught before more generic exceptions – catching a subclass of an already-caught exception is a compile error
· return statement in finally block will override return statement in try block (with a compiler warning that “finally clause cannot complete normally”)
· return statement in finally block will prevent exceptions from being propagated (with a compiler warning that “finally clause cannot complete normally”)
· Common Throwables:
· java.lang.Error (unchecked)
· AssertionError
· ExceptionInInitializerError
· StackOverflowError
· NoClassDefFoundError
· java.lang.Exception (checked)
· ExecutionException
· IOException
· FileNotFoundException
· FileSystemException
· InterruptedException
· java.lang.RuntimeException (unchecked)
· CancellationException
· ClassCastException
· IllegalArgumentException
· IllegalStateException
· IndexOutOfBoundsException
· NoSuchElementException
· NullPointerException
· NumberFormatException
Polymorphism
· An interface extends another interface
· A class extends another class
· A class implements an interface
· Can implicitly cast type A to type B ⇔ this casting is valid for all dynamic types storable in A
Can explicitly cast type A to type B ⇔ there exists a dynamic type storable in A such that this casting is valid (final keyword is taken into consideration)
· Casting upwards (superclass) – implicit cast works
· Casting downwards (subclass) – explicit cast only
· Casting sidewards from class A to class B – cannot (compile error)
· Casting sidewards from interface A to final class B or vice versa – cannot (compile error)
· Casting sidewards from interface A to non-final class or interface B or vice versa – explicit cast works because there might be a class that extends/implements both A and B
· Liskov Substitution Principle: "Let ϕ(x) be a property provable about objects x of type T. Then ϕ(y) should be true for objects y of type S where S is a subtype of T." This means that if S is a subclass of T, then an object of type T can be replaced by an object of type S without changing the desirable property of the program.
Nested Classes
· Can access private members of enclosing class
· Declare class as static to not associate with an instance of the enclosing class
· Can also be declared in a method of the enclosing class (“local class”), anonymous class, or lambda expression
· Can access all local variables that are effectively final
·
[bookmark: _MON_1573040826]Anonymous class declaration:
Java library
Hashing
· Arrays.hashCode(arr) will calculate a hash code for an array of anything (both reference and primitive types)
Functional
· Function<T, R> .apply(T)
· .andThen(…), .compose(…)
· Predicate<T> .test(T)
· Supplier<T> .get()
· Consumer<T> .accept(T)
· Arity = number of arguments
Streams
· Stream.of(varargs…)
· Arrays.stream(arr)
· .parallel(), .sequential(), .unordered()
· Parallel stream operations:
· Must not interfere with stream data (i.e. must not modify its own stream)
· ConcurrentModificationException will be thrown otherwise
· Should preferably be stateless (i.e. result should not depend on things that might change while executing the stream)
· Should minimise side-effects (e.g. writing data to a list, especially one that is not thread-safe)
· reduce(identity, accumulator, combiner)
· combiner.apply(identity, i) == i, for any i in the stream
· [bookmark: _GoBack]combiner and accumulator must be associative
· combiner(a, b) == combiner(b, a), for any a and b
· accumulator(accumulator(i, a), b) == accumulator(accumulator(i, b), a), for any a and b
· combiner and accumulator must be compatible
· combiner.apply(u, accumulator.apply(identity, t)) == accumulator.apply(u, t), for any t and u
Collectors
·

· .characteristics()
· CONCURRENT – accumulator function can be called on the same result container concurrently from multiple threads
· IDENTITY_FINISH – the finisher function is the identity function and can be elided
· UNORDERED – collection operation does not preserve the encounter order of input elements, i.e. it does not matter which other the input elements are fed to the collector
· To make a custome collector, either write a class that implements Collector or use Collector.of(…)
· Combiner is necessary even for serial collectors – there is no guarantee that combiner() will not be called
Functors & Monads
Functors
·

· Functor laws:
· functor.f(x -> x) == functor
(applying identity function must not change object)
· functor.f(g.compose(h)) == functor.f(h).f(g)
(applying composed function must be same as applying sequentially)
Monads
·

· Monad laws:
· Has Monad.of(x) that wraps object(s) into a monad
· Monad.of(x).f(func) == func(x)
(left identity law)
· monad.f(x -> Monad.of(x)) == monad
(right identity law)
· monad.f(g).f(h) == monad.f(x -> g(x).f(h))
(associative law, f() should be associative)
Parallel and Asynchronous Programming
Concurrency
· When different tasks are executed out-of-order without affecting the final outcome, i.e. program is decomposed into parts that are not dependent on order of execution
Parallelism
· Multiple tasks are truly running at the same time
· on multiple processors which can run at the same time
· on a single processor capable of running multiple instructions at the same time
· See Stream
RecursiveTask
· extend RecursiveTask<T> and override T compute() to write the task and write constructor to accept task arguments
· .fork(), .join() – run on another thread
· .compute() – run on this thread
· ForkJoinPool.commonPool().invoke(task) to start the task
· Has some overhead in spawning tasks, so parallelization should only be used if speed-up outweighs the overhead
Asynchronous programming
· Asynchronous method call allows execution to continue immediately after invoking the method, so the rest of the code can continue to execute in parallel with the (long-running) method
CompletableFuture
· Is a functor (.thenApply()) and a monad (.thenCompose())
· .___Async() – runs the supplied functions on another thread

· .whenComplete((result, exception) -> {…})
· .exceptionally(exception -> {…})
· .thenApply(result -> {…})
Style
Order of class modifiers
· public protected private abstract default static final transient volatile synchronized native strictfp
6
Microsoft_Word_Document1.docx
interface Collector<T, A, R> {

 BiConsumer<A, T> accumulator();

 BinaryOperator<A> combiner();

 Function<A, R> finisher();

 Supplier<A> supplier();

}

image3.emf
interface Functor < T > { public < R > Functor < R > f (Function < T , R > func); }

Microsoft_Word_Document2.docx
interface Functor<T> {

 public <R> Functor<R> f(Function<T, R> func);

}

image4.emf
interface Monad < T > { public < R > Monad < R > f (Function < T , Monad < R >> func); }

Microsoft_Word_Document3.docx
interface Monad<T> {

 public <R> Monad<R> f(Function<T, Monad<R>> func);

}

image5.emf
 intermediary terminal terminal (Runnable) A E

Construct from task static supplyAsync static runAsync X

complete listener thenApply thenAccept thenRun X X

completeExceptionally listener exceptionally

Combined complete and completeExceptionally listener handle whenComplete X X

Dynamic callback chaining thenCompose X X

AND all combining static allOf

AND both combining thenCombine thenAcceptBoth runAfterBoth X X

OR any combining static anyOf

OR either combining applyToEither acceptEither runAfterEither X X

 A (asynchronous) means that there’s an additional method starting with the same name, but ending with …Async for asynchronous callback invocation.  E (Executor) means that there’s an additional asynchronous (A) method with an additional Executor parameter for explicit Executor assignment.

Microsoft_Word_Document4.docx
		

		intermediary

		terminal

		terminal (Runnable)

		A

		E

		Construct from task

		static supplyAsync

		

		static runAsync

		

		X

		complete listener

		thenApply

		thenAccept

		thenRun

		X

		X

		completeExceptionally listener

		exceptionally

		

		

		

		

		Combined complete and

 completeExceptionally listener

		handle

		whenComplete

		

		X

		X

		Dynamic callback chaining

		thenCompose

		

		

		X

		X

		AND all combining

		static allOf

		

		

		

		

		AND both combining

		thenCombine

		thenAcceptBoth

		runAfterBoth

		X

		X

		OR any combining

		static anyOf

		

		

		

		

		OR either combining

		applyToEither

		acceptEither

		runAfterEither

		X

		X

· A (asynchronous) means that there’s an additional method starting with the same name, but ending with …Async for asynchronous callback invocation.

· E (Executor) means that there’s an additional asynchronous (A) method with an additional Executor parameter for explicit Executor assignment.

image1.emf
new Comparator < Event >() { public int compare (Event e1 , Event e2) { return e1 . compareTo (e2); } }

Microsoft_Word_Document.docx
new Comparator<Event>() {

 public int compare(Event e1, Event e2) {

 return e1.compareTo(e2);

 }

}

image2.emf
interface Collector < T , A , R > { BiConsumer < A , T > accumulator (); BinaryOperator < A > combiner (); Function < A , R > finisher (); Supplier < A > supplier (); }

